aboutsummaryrefslogtreecommitdiff
path: root/src/tsp_approx.rs
blob: 79aca3d3da6b3de7db97da09e47a9546b70c544f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use indicatif::{ProgressBar, ProgressStyle};
use multiset::HashMultiSet;
use partitions::partition_vec::PartitionVec;
use std::collections::{HashMap, HashSet};

use crate::{MetricElem, TspAlg};

fn get_mst(dist_cache: &HashMap<(usize, usize), f64>, num_embeds: usize) -> HashMap<usize, Vec<usize>> {
    let mut possible_edges = Vec::with_capacity((num_embeds * num_embeds - num_embeds) / 2);
    let mut mst = HashMap::with_capacity(num_embeds);

    // insert all edges we could ever use
    mst.insert(0, Vec::new());
    for a in 0..num_embeds {
        for b in a + 1..num_embeds {
            possible_edges.push((dist_cache[&(a.min(b), a.max(b))], a, b));
        }
    }

    let mut subtrees: PartitionVec<usize> = (0..num_embeds).collect();

    possible_edges.sort_unstable_by(|(da, _, _), (db, _, _)| da.partial_cmp(db).unwrap());
    for (_, a, b) in possible_edges.into_iter() {
        if !subtrees.same_set(a, b) {
            mst.entry(a).or_default().push(b);
            mst.entry(b).or_default().push(a);

            subtrees.union(a, b);
        }
        if mst.len() >= num_embeds {
            break;
        }
    }

    mst
}

fn tsp_from_mst(dist_cache: &HashMap<(usize, usize), f64>, mst: HashMap<usize, Vec<usize>>) -> (Vec<usize>, f64) {
    fn dfs(cur: usize, prev: usize, t: &HashMap<usize, Vec<usize>>, into: &mut Vec<usize>) {
        into.push(cur);
        t.get(&cur).unwrap().iter().for_each(|&c| {
            if c != prev {
                dfs(c, cur, t, into)
            }
        });
    }
    let mut tsp_path = Vec::with_capacity(mst.len());
    dfs(0, usize::MAX, &mst, &mut tsp_path);

    let mut total_dist = 0.;
    for i in 0..tsp_path.len() - 1 {
        let (a, b) = (tsp_path[i], tsp_path[i + 1]);
        total_dist += dist_cache[&(a.min(b), a.max(b))];
    }

    (tsp_path, total_dist)
}

// TODO this is a non-ideal, greedy algorithm. there are better algorithms for this,
// and i should probably implement one.
/// 'verts' must be an even number of vertices with odd degree
fn min_weight_matching(dist_cache: &HashMap<(usize, usize), f64>, verts: &[usize]) -> HashMap<usize, usize> {
    let num_odd = verts.len();
    assert!(num_odd % 2 == 0);

    let mut possible_edges = Vec::with_capacity((num_odd * num_odd - num_odd) / 2);
    for &x in verts {
        for &y in verts {
            if x != y {
                possible_edges.push((dist_cache[&(x.min(y), x.max(y))], x, y));
            }
        }
    }
    possible_edges.sort_unstable_by(|(da, _, _), (db, _, _)| da.partial_cmp(db).unwrap());

    let mut res = HashMap::new();

    for (_, a, b) in possible_edges.into_iter() {
        if res.len() >= num_odd {
            break;
        }

        if !res.contains_key(&a) && !res.contains_key(&b) {
            res.insert(a, b);
            res.insert(b, a);
        }
    }

    res
}

fn euler_tour(
    mut graph: HashMap<usize, HashMultiSet<usize>>,
) -> (usize, HashMap<usize, Vec<(usize, usize, usize)>>) {
    let mut r: HashMap<_, Vec<_>> = HashMap::new();
    let mut partially_explored = HashSet::new();

    // initial setup: pretend that we have only the path 'INF -> root -> INF'
    // for some arbitrary root, and set cur to some node next to root.
    // This mimicks the state we're in just after a new phase (because it is)
    let &root = graph.keys().next().unwrap();
    r.insert(root, vec![(usize::MAX, usize::MAX, usize::MAX)]);
    let e = graph.get_mut(&root).unwrap();
    let &next = e.iter().next().unwrap();
    e.remove(&next);
    graph.get_mut(&next).unwrap().remove(&root);

    let mut cur = next;
    let mut prev = root;
    let mut pprev = usize::MAX;
    let mut circ_start_edge = cur;

    loop {
        let e = graph.get_mut(&cur).unwrap();
        if e.len() <= 1 {
            partially_explored.remove(&cur);
        } else {
            partially_explored.insert(cur);
        }

        match e.iter().next() {
            Some(&next) => {
                e.remove(&next);
                graph.get_mut(&next).unwrap().remove(&cur);

                r.entry(cur).or_default().push((pprev, prev, next));
                pprev = prev;
                prev = cur;
                cur = next;
            }
            None => {
                // we got stuck, which means we returned to the starting vertex of
                // the current phase. now, we need join the 2 formed trips

                // pick an arbitrary existing edge-pair going through cur
                let cur_vec = r.get_mut(&cur).unwrap();
                let (pp, p, n) = cur_vec[0];
                // reroute
                cur_vec[0] = (pp, p, circ_start_edge);
                cur_vec.push((pprev, prev, n));

                // after rerouting, the pprev value of the next node will be wrong
                match r.get_mut(&n) {
                    // should only happen with n == usize::MAX. no need to reroute the
                    // following node in that case, as there's no such node
                    None => (),
                    Some(rerouted_vec) => {
                        let p = rerouted_vec
                            .iter()
                            .position(|&(_, other_p, _)| other_p == cur)
                            .unwrap();
                        rerouted_vec[p] = (prev, cur, rerouted_vec[p].2);
                    }
                }

                // are there any partially explored vertices left?
                match partially_explored.iter().next() {
                    None => break, // graph fully explored :)
                    Some(&new_cur) => {
                        // reset our active point (note that we don't have to delete
                        // new_cur from partially_explored; that's done the next time we
                        // get there)
                        let e = graph.get_mut(&new_cur).unwrap();
                        let &next = e.iter().next().unwrap();
                        e.remove(&next);
                        graph.get_mut(&next).unwrap().remove(&new_cur);

                        circ_start_edge = next;
                        pprev = r[&new_cur][0].1;
                        prev = new_cur;
                        cur = next;
                    }
                }
            }
        }
    }

    (root, r)
}

fn christofides(dist_cache: &HashMap<(usize, usize), f64>, mst: HashMap<usize, Vec<usize>>) -> (Vec<usize>, f64) {
    let mut mst: HashMap<_, HashMultiSet<_>> = mst
        .into_iter()
        .map(|(k, v)| (k, v.into_iter().collect()))
        .collect();

    let odd_verts: Vec<_> = mst
        .iter()
        .filter_map(|(&i, s)| if s.len() % 2 == 0 { None } else { Some(i) })
        .collect();

    // from here on, 'mst' is a bit of a misnomer, as we're adding more edges such
    // that all vertices have even degree
    for (a, b) in min_weight_matching(dist_cache, &odd_verts) {
        mst.get_mut(&a).unwrap().insert(b);
    }

    let mut r = Vec::new();
    let mut total_dist = 0.;
    let mut visited_verts = HashSet::new();
    visited_verts.insert(usize::MAX);

    let mut pprev = usize::MAX;
    let mut prev = usize::MAX;
    let (mut cur, euler_tour) = euler_tour(mst);
    loop {
        match euler_tour.get(&cur) {
            None => break, // tour complete: this should happen iff 'cur == usize::MAX'
            Some(v) => {
                let &(_, _, next) = v
                    .iter()
                    .find(|(pp, p, _)| *pp == pprev && *p == prev)
                    .unwrap();

                if visited_verts.insert(next) {
                    // haven't visited 'next' yet
                    r.push(next);
                    total_dist += dist_cache[&(cur.min(next), cur.max(next))];
                }
                pprev = prev;
                prev = cur;
                cur = next;
            }
        }
    }

    (r, total_dist)
}

fn refine<M>(_: &[M], _: Vec<usize>, _: f64) -> (Vec<usize>, f64)
where
    M: MetricElem,
{
    // convert the tour into a linked-list representation. instead of pointers, we use
    // an array of indices
    //let tour_ll = Vec::new();
    todo!()
}

fn get_dist_cache<M>(embeds: &[M]) -> HashMap<(usize, usize), f64>
where
    M: MetricElem,
{
    let n = embeds.len();
    let mut r = HashMap::with_capacity((n * n - n) / 2);
    for a in 0..n {
        for b in a + 1..n {
            r.insert((a, b), embeds[a].dist(&embeds[b]));
        }
    }

    r
}

pub(crate) fn tsp<M>(embeds: &[M], alg: &TspAlg) -> (Vec<usize>, f64)
where
    M: MetricElem,
{
    let bar = ProgressBar::new_spinner();
    bar.set_style(ProgressStyle::with_template("{spinner} {msg}").unwrap());
    bar.enable_steady_tick(std::time::Duration::from_millis(100));

    bar.set_message("Calculating distances...");
    let dc = get_dist_cache(embeds);

    bar.set_message("Finding mst...");
    let mst = get_mst(&dc, embeds.len());

    bar.set_message("Finding path...");
    let r = match alg {
        TspAlg::MstDfs => tsp_from_mst(&dc, mst),
        TspAlg::Christofides => christofides(&dc, mst),
        TspAlg::ChristofidesRefined => {
            let (p, l) = christofides(&dc, mst);
            bar.set_message("Refining path...");
            refine(embeds, p, l)
        }
    };

    bar.finish();

    r
}